

FINAL NEET(UG)-2021 EXAMINATION

(Held On Sunday 12th SEPTEMBER, 2021)

CHEMISTRY

TEST PAPER WITH ANSWER & SOLUTION

SECTION-A (CHEMISTRY)

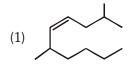
51. Given below are two statements:

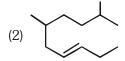
Statement I:

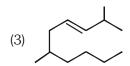
Aspirin and Paracetamol belong to the class of narcotic analgesics.

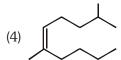
Statement II:

Morphine and Heroin are non-narcotic analgesics. In the light of the above statements, choose the **correct** answer from the options given below.


- (1) Both **Statement I** and **Statement II** are true.
- (2) Both **Statement** I and **Statement II** are false.
- (3) **Statement I** is correct but **Statement II** is false.
- (4) **Statement I** is incorrect but **Statement II** is true.


Ans. (2)


Sol. Aspirin and paracetamol belongs to the class of non-narcotic analgesic.


Morphine and heroin are narcotic analgesics.

52. The correct structure of 2,6-Dimethyl-dec-4-ene is:

Ans. (1)

Sol.

2,6-Dimethyldec-4-ene

- **53.** BF₃ is planar and electron deficient compound. Hybridization and number of electrons around the central atom, respectively are:
 - (1) sp³ and 4

(2) sp^{3} and 6

(3) sp² and 6

 $(4) \text{ sp}^2 \text{ and } 8$

Ans. (3)

Sol.

- sp², Trigonal planar 6e⁻ around central atom
 54. Noble gases are named because of their inertness towards reactivity. Identify an incorrect statement about them.
 - (1) Noble gases are sparingly soluble in water.
 - (2) Noble gases have very high melting and boiling points.
 - (3) Noble gases have weak dispersion forces.
 - (4) Noble gases have large positive values of electron gain enthalpy.

Ans. (2)

- **Sol.** Noble gases have weak dispersion forces so their melting and boiling point are very low.
- **55.** The molar conductance of NaCl, HCl and CH_3COONa at infinite dilution are 126.45,426.16 and $91.0~S~cm^2~mol^{-1}$ respectively. The molar conductance of CH_3COOH at infinite dilution is.

Choose the right option for your answer.

(1) $201.28 \text{ S cm}^2 \text{ mol}^{-1}$

(2) $390.71 \text{ S cm}^2 \text{ mol}^{-1}$

(3) 698.28 S cm² mol⁻¹

(4) $540.48 \text{ S cm}^2 \text{ mol}^{-1}$

Ans. (2)

Sol. Λ_{m}^{∞} (NaCl) = 126.45 Scm² mol⁻¹

 $\Lambda_{\rm m}^{\infty}\,\text{(HCl)}\,=\,426.16\,\,\text{Scm}^2\,\,\text{mol}^{-1}$

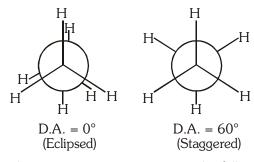
 $\Lambda_{m(CH_3COONa)}^{\infty} = 91 \text{ Scm}^2 \text{ mol}^{-1}$

$$\begin{split} \therefore \quad & \Lambda_{m(\text{CH}_3\text{COOH})}^{\infty} = \Lambda_{m(\text{CH}_3\text{COONa})}^{\infty} + \Lambda_{m(\text{HCl})}^{\infty} - \Lambda_{m(\text{NaCl})}^{\infty} \\ & = 91 \, + \, 426.16 \, - \, 126.45 \\ & = \, 391.72 \, \, \text{Scm}^2 \, \, \text{mol}^{-1} \end{split}$$

Final NEET(UG)-2021 Exam/12-09-2021

- **56.** The right option for the statement "Tyndall effect is exhibited by", is:
 - (1) NaCl solution
- (2) Glucose solution
- (3) Starch solution
- (4) Urea solution

Ans. (3)

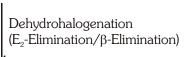

- **Sol.** Tyndall effect is exhibited by colloidal solutions. Starch solution is a colloidal solution.
- **57.** The RBC deficiency is deficiency disease of:
 - (1) Vitamin B₁₂
- (2) Vitamin B₆
- (3) Vitamin B₁
- (4) Vitamin B₂

Ans. (1)

- **Sol.** Vitamin B_{12} deficiency \rightarrow Pernicious anaemia (RBC deficient in heamoglobin)
- **58.** Dihedral angle of least stable conformer of ethane is :
 - $(1) 120^{\circ}$
- $(2) 180^{\circ}$
- $(3) 60^{\circ}$
- (4) 0°

Ans. (4)

Sol. Dihedral angle (D.A.) of least stable conformer of ethane = 0°



- **59.** The **incorrect** statement among the following is :
 - (1) Actinoid contraction is greater for element to element than Lanthanoid contraction.
 - (2) Most of the trivalent Lanthanoid ions are colorless in the solid state.
 - (3) Lanthanoids are good conductors of heat and electricity.
 - (4) Actinoids are highly reactive metals, especially when finely divided.

Ans. (2)

- **Sol.** Most of the trivalent lanthanoid ions are coloured in the solid state.
- **60.** The major product formed in dehydrohalogenation reaction of 2-Bromo pentane is Pent-2-ene. This product formation is based on ?
 - (1) Saytzeff's Rule
- (2) Hund's Rule
- (3) Hoffmann Rule
- (4) Huckel's Rule

Ans. (1)

(Major product by Saytzeff's rule)

- **61.** Which one among the following is the correct option for right relationship between C_P and C_V for one mole of ideal gas ?
 - $(1) C_P + C_V = R$
- (2) $C_P C_V = R$
- (3) $C_P = RC_V$
- (4) $C_V = RC_P$

Ans. (2)

- **Sol.** For one mole of an ideal gas $C_p C_v = R$
- **62.** Which one of the following polymers is prepared by addition polymerisation?
 - (1) Teflon
- (2) Nylon-66
- (3) Novolac
- (4) Dacron

Ans. (1)

Sol. Teflon are prepared by addition polymerisation from tetrafluroethene

$$CF_2 = CF_2 \xrightarrow{\text{catalyst}} + CF_2 - CF_2 \xrightarrow{\text{Teflon}}$$

Nylon-66, Novolac, Dacron are prepared by condensation polymerisation.

63. What is the IUPAC name of the organic compound formed in the following chemical reaction?

$$Acetone \xrightarrow{\quad (i) \ C_2H_5MgBr, \ dry \ Ether \\ \quad (ii) \ H_2O, \ H^+} Product$$

- (1) 2-methyl propan-2-ol(2) pentan-2-ol
- (3) pentan-3-ol
- (4) 2-methyl butan-2-ol

2-Methylbutan-2-ol

Ans. (4)

64. Match List - I with List - II.

List-I	List-II		
(a) PCl ₅	(i) Square pyramidal		
(b) SF ₆	(ii) Trigonal planar		
(c) BrF ₅	(iii) Octahedral		
(d) BF ₃	(iv) Trigonal bipyramidal		

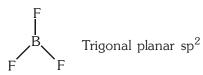
Choose the **correct** answer from the options given below.

- (1) (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)
- (2) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
- (3) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
- (4) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)

Ans. (1)

Sol. PCl₅:

$$\begin{array}{c|c} Cl & Cl \\ \hline Cl & P - Cl & Trigonal bipyramidal sp^3d \\ \hline Cl & Cl & \end{array}$$


 SF_6 :

$$F = F = F - F$$
 Octahedral sp^3d^2

 BrF_5 :

$$F = \begin{cases} F \\ F \end{cases}$$
 Square pyramidal sp^3d^2

 $BF_3:$

- Which one of the following methods can be used to obtain highly pure metal which is liquid at room temperature?
 - (1) Electrolysis
 - (2) Chromatography
 - (3) Distillation
 - (4) Zone refining

Ans. (3)

Sol. At room temperature Hg is liquid and it is purified by 'Distillation method'.

The major product of the following chemical 66. reaction is:

(1)
$$CH_3$$
 CH CH_2 CH_2 CH_2 CH_3

(2)
$$CH_3$$
 CH_2 CH_2 CH_2 CH_2 CH_3

(4)
$$CH_3$$
 $CBr-CH_2-CH_3$

Ans. (1)

$$CH_3$$
 $CH-CH=CH_2+HBr \frac{(C_6H_5CO)_2O_2}{(Benzoyl peroxide)}$

 $CH_{3} \longrightarrow CH-CH=CH_{2}+HBr \xrightarrow{(C_{6}H_{5}CO)_{2}O_{2}} \xrightarrow{(Benzoyl \ peroxide)}$ $CH_{3} \longrightarrow CH-CH_{2}-CH_{2}-Br$ $CH_{3} \longrightarrow CH-CH_{2}-CH_{2}-Br$ Sol.

> In the presence of peroxide, addition of HBr to unsymmetrical alkenes take place by anti-Markovnikov's rule/Peroxide effect/Kharash effect.

- **67**. Tritium, a radioactive isotope of hydrogen, emits which of the following particles?
 - (1) Beta(β⁻)
 - (2) Alpha (α)
 - (3) Gamma (γ)
 - (4) Neutron (n)

Ans. (1)

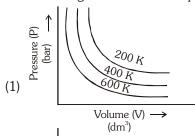
- **Sol.** Tritium is radioactive and emits low energy β^- particles ($_{-1}e^{\circ}$)
- The correct sequence of bond enthalpy of 'C-X' bond is **68**.
 - (1) $CH_3-F < CH_3-Cl < CH_3-Br < CH_3-I$
 - (2) $CH_3-F > CH_3-Cl > CH_3-Br > CH_3-I$
 - (3) $CH_3-F < CH_3-Cl > CH_3-Br > CH_3-I$
 - (4) $CH_3-Cl > CH_3-F > CH_3-Br > CH_3-I$

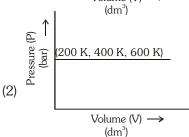
Ans. (2)

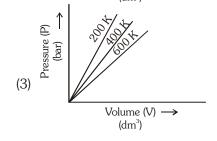
Sol. Correct sequence of bond enthalpy of C-X bond is $CH_3-F > CH_3 - Cl > CH_3 - Br > CH_3 - I$

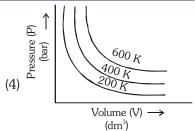
AVIRAL CLASSES

Final NEET(UG)-2021 Exam/12-09-2021

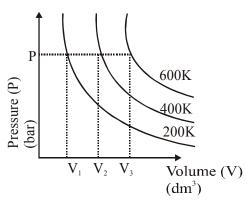

- **69.** Right option for the number of tetrahedral and octahedral voids in hexagonal primitive unit cell are:
 - (1) 8, 4
 - (2) 6, 12
 - (3) 2, 1
 - (4) 12,6
- Ans. (4)
- **Sol.** No. of atoms in Hexagonal primitive unit cell = 6 No. of Tetrahedral voids = $2 \times$ No. of atoms per unit cell = 2×6


No. of Octahedral voids = No. of atoms per unit cell = 6


- **70.** Which of the following reactions is the metal displacement reaction? Choose the right option.
 - (1) $2KClO_3 \xrightarrow{\Delta} 2KCl + 3O_2$
 - (2) $Cr_2O_3 + 2Al \xrightarrow{\Delta} Al_2O_3 + 2Cr$
 - (3) Fe + 2HCl \rightarrow FeCl₂ + H₂ \uparrow
 - (4) $2Pb(NO_3)_2 \rightarrow 2PbO + 4NO_2 + O_2 \uparrow$
- Ans. (2)
- **Sol.** Aluminium is more electropositive than Cr, so it displaced chromium from Cr_2O_3 .


$$Cr_2O_3 + Al \xrightarrow{\Delta} Al_2O_3 + Cr$$

71. Choose the correct option for graphical representation of Boyle's law, which shows a graph of pressure vs. volume of a gas at different temperatures:


Ans. (4)

Sol. According to Boyle's law

$$P \propto \frac{1}{V}$$

At a given pressure,

$$V \propto T$$

- **72.** The pK_b of dimethylamine and pK_a of acetic acid are 3.27 and 4.77 respectively at T (K). The correct option for the pH of dimethylammonium acetate solution is:
 - (1) 8.50
- (2) 5.50
- (3) 7.75
- (4) 6.25

Ans. (3)

Sol. Dimethylammonium acetate is a weak acid & weak base type of salt

$$pH = 7 + \frac{1}{2}pK_a - \frac{1}{2}pK_b$$

$$= 7 + \frac{1}{2} \times 4.77 - \frac{1}{2} \times 3.27$$
$$= 7.75$$

- **73.** Among the following alkaline earth metal halides, one which is covalent and soluble in organic solvents is:
 - (1) Calcium chloride
 - (2) Strontium chloride
 - (3) Magnesium chloride
 - (4) Beryllium chloride

Ans. (4)

Sol. BeCl₂ is covalent and soluble in a organic solvent.

- **74.** The maximum temperature that can be achieved in blast furnace is :
 - (1) upto 1200 K
 - (2) upto 2200 K
 - (3) upto 1900 K
 - (4) upto 5000 K

Ans. (2)

- **Sol.** The maximum temperature that can be achieved in blast furnace is upto 2200 K.
- **75.** Ethylene diaminetetraacetate (EDTA) ion is :
 - (1) Hexadentate ligand with four "O" and two "N" donor atoms
 - (2) Unidentate ligand
 - (3) Bidentate ligand with two "N" donor atoms
 - (4) Tridentate ligand with three "N" donor atoms

Ans. (1)

Donar atom (N, N, O, O, O, O)

- 76. The following solutions were prepared by dissolving 10 g of glucose ($C_6H_{12}O_6$) in 250 ml of water (P_1), 10 g of urea (CH_4N_2O) in 250 ml of water (P_2) and 10 g of sucrose ($C_{12}H_{22}O_{11}$) in 250 ml of water (P_3). The right option for the decreasing order of osmotic pressure of these solutions is :
 - (1) $P_2 > P_1 > P_3$
 - (2) $P_1 > P_2 > P_3$
 - (3) $P_2 > P_3 > P_1$
 - (4) $P_3 > P_1 > P_2$

Ans. (1)

Sol. $\pi = iCRT$

$$P_1 = 1 \times \frac{10}{180} \times R \times T$$
 (For Glucose)

$$P_2 = 1 \times \frac{10}{60} \times R \times T$$
 (For Urea)

$$P_3 = 1 \times \frac{10}{342} \times R \times T$$
 (For Sucrose)

$$\therefore P_2 > P_1 > P_3$$

77. Statement I:

Acid strength increases in the order given as $HF \ll HCl \ll HBr \ll HI$.

Statement II:

As the size of the elements F, Cl, Br, I increases down the group, the bond strength of HF, HCl, HBr and HI decreases and so the acid strength increases.

In the light of the above statements, choose the **correct** answer from the options given below.

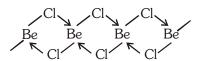
- (1) Both **Statement I** and **Statement II** are true.
- (2) Both **Statement I** and **Statement II** are false
- (3) **Statement I** is correct but **Statement II** is false.
- (4) **Statement I** is incorrect but **Statement II** is true.

Ans. (1)

 Sol. H-F
 H-Cl
 H-Br
 H-I

 1s-2p
 1s-3p
 1s-4p
 1s-5p

Down the group size increases

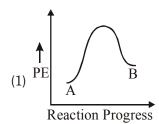

Overlapping decreases

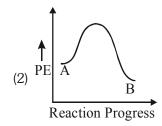
Acidic strength increases

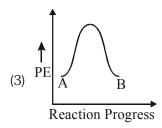
- **78.** The structures of beryllium chloride in solid state and vapour phase, are:
 - (1) Chain and dimer, respectively
 - (2) Linear in both
 - (3) Dimer and Linear, respectively
 - (4) Chain in both

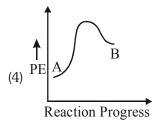
Ans. (1)

Sol. BeCl₂ in solid state exist in a polymeric form & in a vapour state in exist in a dimeric form.




chain polymeric structure


Vapour state exist in a dimeric form



79. For a reaction $A \rightarrow B$, enthalpy of reaction is -4.2 kJ mol⁻¹ and enthalpy of activation is 9.6 kJ mol⁻¹. The correct potential energy profile for the reaction is shown in option.

Ans. (2)

- **Sol.** For a given reaction ΔH is negative. Hence, potential energy profile is of an exothermic reaction.
- **80.** Zr (Z = 40) and Hf (Z = 72) have similar atomic and ionic radii because of:
 - (1) belonging to same group
 - (2) diagonal relationship
 - (3) lanthanoid contraction
 - (4) having similar chemical properties

Ans. (3)

Sol. Due to lanthanoid contraction Zr and Hf has similar atomic and ionic radii.

A particular station of All India Radio, New Delhi, 81. broadcasts on a frequency of 1,368 kHz (kilohertz). The wavelength of the electromagnetic radiation emitted by the transmitter is :

[speed of light $c = 3.0 \times 10^8 \text{ ms}^{-1}$]

(1) 219.3 m

(2) 219.2 m

(3) 2192 m

(4) 21.92 cm

Ans. (1)

Sol.
$$\lambda = \frac{c}{v}$$

$$\lambda = \frac{3 \times 10^8}{1368 \times 10^3} = 219.298 \text{m} \approx 219.3 \text{ m}$$

82. An organic compound contains 78% (by wt.) carbon and remaining percentage of hydrogen. The right option for the empirical formula of this compound is [Atomic wt. of C is 12, H is 1]

(1) CH

 $(2) CH_2$

(3) CH₃

(4) CH₄

Ans. (3)

Sol. Element % At.weight -At.weight ratio

6.5 22 Н 22 1

 ≈ 3

Empirical formula of this compound is CH₃

The compound which shows metamerism is:

 $(1) C_5 H_{12}$

(2) C_3H_8O

(3) C_3H_6O

 $(4) C_4 H_{10} O$

Ans. (4)

Sol. (4) $C_4H_{10}O$ will have different alkyl group attached with polyvalent functional group that's why show metamerism

$$CH_3$$
-O- CH_2 - CH_2 - CH_3
3) $C_3H_6O \Rightarrow CH_3$ -C- CH_3

(3)
$$C_3H_6O \Rightarrow CH_3-C-CH_3$$

$$0$$

Only one arrangement possible so can not show metamerism.

- (2) $C_3H_8O \Rightarrow CH_3-O-CH_2-CH_3$ Only one arrangement possible so can not show metamerism.
- (1) No polyvalent functional group in C_5H_{12} , so can not show metamerism.

84. Identify the compound that will react with Hinsberg's reagent to give a solid which dissolves in alkali:

(1)
$$CH_3$$
 CH_2 NO_2

Ans. (3)

Sol. 1° amines react with Hingsberg's reagent to give a solid, which dissolve in alkali.

$$CH_3-CH_2-NH_2+ \bigcirc \bigcirc \begin{matrix} O \\ \parallel \\ S - Cl \longrightarrow \\ 0 \end{matrix}$$
1° amine

- **85.** The correct option for the number of body centred unit cells in all 14 types of Bravais lattice unit cells is:
 - (1) 7

(2) 5

(3) 2

(4) 3

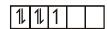
Ans. (4)

Sol. The number of Body centred unit cells in all 14 types of Bravais lattice unit cells is 3.

SECTION-B

86. Match List-I with List-II

List-I		List-II	
(a)	$[Fe(CN)_6]^{3-}$	(i)	5.92 BM
(b)	$[Fe(H_2O)_6]^{3+}$	(ii)	0 BM
(c)	$[Fe(CN)_6]^{4-}$	(iii)	4.90 BM
(d)	$[Fe(H_2O)_6]^{2+}$	(iv)	1.73 BM


Choose the **correct** answer from the options given below

- (1) (a)-(iv), (b)-(ii), (c)-(i), (d)-(iii)
- (2) (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i)
- (3) (a)-(i), (b)-(iii), (c)-(iv), (d)-(ii)
- (4) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)

Ans. (4)

Sol. $[Fe(CN)_6]^{-3}$

$$Fe^{+3} = 3d^5$$

Unpaired electron = 1, μ = 1.7 BM

$$[Fe(H_2O)_6]^{+3}$$
 $Fe^{+3} = 3d^5$ 111111

Unpaired electrons = 5, μ = 5.9 BM

$$[Fe(CN)_6]^{-4}$$
 $Fe^{+2} = 3d^6$

Unpaired electron = 0, μ = 0 BM

$$[Fe(H_2O)_6]^{+2}$$
 $Fe^{+2} = 3d^6$ 1 1 1 1 1

Unpaired electrons = 4, μ = 4.9 BM

- **87.** Choose the correct option for the total pressure (in atm.) in a mixture of 4 g O_2 and 2 g H_2 confined in a total volume of one litre at $0^{\circ}C$ is: [Given R = 0.082 L atm $mol^{-1}K^{-1}$, T=273K]
 - (1) 2.518

(2) 2.602

(3) 25.18

(4) 26.02

Ans. (3)

Sol. $n_{O_2} = \frac{4}{32} = \frac{1}{8}$ mol

$$n_{H_2} = \frac{2}{2} = 1 \text{ mol}$$

$$n_{\text{Total}} = n_{O_2} + n_{H_2} = \frac{1}{8} + 1 = \frac{9}{8} \text{ mol}$$

PV = nRT

$$P_{Total} \times 1 = \frac{9}{8} \times 0.082 \times 273$$

 $P_{Total} = 25.18 \text{ atm}$

Final NEET(UG)-2021 Exam/12-09-2021

88. $CH_3CH_2COO^-Na^+ \xrightarrow{NaOH, +?} CH_3CH_3 + Na_2CO_3.$

Consider the above reaction and identify the missing reagent/chemical.

- (1) B_2H_6
- (2) Red Phosphorus
- (3) CaO
- (4) DIBAL-H

Ans. (3)

Sol. $CH_3-CH_2-COO^ Na^+$ $\frac{NaOH_+?}{Heat}$

$$CH_3-CH_3 + Na_2CO_3$$

Decarboxylation takes place by soda-lime (NaOH + CaO)

- **89.** For irreversible expansion of an ideal gas under isothermal condition, the correct option is:
 - (1) $\Delta U = 0$, $\Delta S_{total} = 0$ (2) $\Delta U \neq 0$, $\Delta S_{total} \neq 0$
 - (3) $\Delta U = 0$, $\Delta S_{\text{total}} \neq 0$ (4) $\Delta U \neq 0$, $\Delta S_{\text{total}} = 0$

Ans. (3)

Sol. For irreversible expansion of an ideal gas under isothermal condition

$$\Delta U = 0, \ \Delta S_{Total} \neq 0$$

- **90.** In which one of the following arrangements the given sequence is not strictly according to the properties indicated against it ?
 - (1) HF < HCl
- : Increasing acidic
- < HBr < HI
- strength
- (2) $H_2O < H_2S$
- : Increasing pK_a
- $< H_2Se < H_2Te$
- values
- (3) $NH_3 < PH_3$
 - : Increasing
- $< AsH_3 < SbH_3$
- acidic character
- $(4) CO_2 < SiO_2$
- : Increasing
- $< SnO_2 < PbP_2$
- oxidizing power

Ans. (2)

Sol. $H_2O < H_2S < H_2Se < H_2Te$

Down the group acidic strength increases So pK_a value decreases

91. The molar conductivity of 0.007 M acetic acid is 20 S cm² mol⁻¹. What is the dissociation constant of acetic acid? Choose the correct option.

$$\begin{bmatrix} \Lambda_{\text{H}^+}^{\text{o}} = 350\,\text{S}\,\text{cm}^2\text{mol}^{-1} \\ \Lambda_{\text{CH}_3\text{COO}^-}^{\text{o}} = 50\,\text{S}\,\text{cm}^2\text{mol}^{-1} \end{bmatrix}$$

- (1) $1.75 \times 10^{-4} \text{ mol L}^{-1}$
- (2) $2.50 \times 10^{-4} \text{ mol L}^{-1}$
- (3) $1.75 \times 10^{-5} \text{ mol } L^{-1}$
- (4) $2.50 \times 10^{-5} \text{ mol L}^{-1}$

Ans. (3)

Sol. $\Lambda_{M(CH_3COOH)}^0 = \Lambda_{M_{(H^+)}}^0 + \Lambda_{M_{(CH_3COOT)}}^0$

$$= 350 + 50 = 400 \text{ Scm}^2 \text{mol}^{-1}$$

$$\alpha = \frac{\Lambda_M^{\rm C}}{\Lambda_M^{\rm 0}}$$

$$\alpha = \frac{20}{400} = 5 \times 10^{-2}$$

$$K_{a(CH,COOH)} = C\alpha^2$$

=
$$0.007 \times (5 \times 10^{-2})^2$$

= 1.75×10^{-5} mol L⁻¹

92. The slope of Arrhenius Plot $\left(\ln k \text{ v/s } \frac{1}{T}\right)$ of first

order reaction is -5×10^3 K. The value of E_a of the reaction is. Choose the correct option for your answer.

[Given $R=8.314 \text{ JK}^{-1} \text{ mol}^{-1}$]

- (1) 41.5 kJ mol⁻¹
- (2) 83.0 kJ mol⁻¹
- (3) 166 kJ mol⁻¹
- $(4) -83 \text{ kJ mol}^{-1}$

Ans. (1)

Sol.
$$\ell nK = \ell nA - \frac{Ea}{R} \left(\frac{1}{T}\right)$$

In
$$\ell nk$$
 v/s $\frac{1}{T}$ graph

Slope =
$$-\frac{Ea}{R}$$

$$-5 \times 10^3 = \frac{-Ea}{8.314}$$

$$Ea = 5 \times 10^3 \times 8.314$$

 $= 41500 \text{ J mol}^{-1} \text{ or } 41.5 \text{ kJ mol}^{-1}$

93. The product formed in the following chemical reaction is

$$\begin{array}{c|c}
O & O \\
\parallel & \\
CH_2-C-OCH_3 \\
\hline
C_2H_5OH
\end{array}$$
?

(2)
$$CH_2$$
- CH_2 - OH

(4)
$$CH_2$$
-C-OCH₃ CH_3

Ans. (4)

Sol.
$$CH_2$$
-C-OCH₃ $NaBH_4$
 CH_3 C_2H_5OH

 $NaBH_4$ reduces aldehyde/ketone but does not reduce ester.

94. Match List-II with List-II.

List-II

(i) Hell-Volhard-Zelinsky reaction

List-I

(ii) Gattermann-Koch reaction

(c) R-CH₂-OH + R'COOH (iii) Haloform reaction

 $\xrightarrow{\text{Conc. H}_2\text{SO}_4} \rightarrow$ (d) R-CH₂-COOH

(iv) Esterification

Choose the **correct** answer from the options given below.

(1) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)

(2) (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv)

(3) (a)-(i), (b)-(iv), (c)-(iii), (d)-(ii)

(4) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)

Ans. (4)

List-I

List-II

(b) $R-C-CH_3 + NaOX \longrightarrow$ (iii) Haloform reaction

(c) R–CH₂OH + R'COOH $\xrightarrow{\text{conc. } \text{H}_2\text{SO}_4}$ (iv) Esterification

(d) R-CH₂COOH
$$\xrightarrow{\text{(i)} X_2/\text{Red P}}$$
 (i) Hell-Volhard Zelinsky reaction

95. Which of the following molecules is non-polar in nature ?

(1) POCl₃

(2) CH₂O

(3) SbCl₅

(4) NO₂

Ans. (3)

Sol.
$$Cl$$
 Cl
 Cl
 Cl
 Cl
 Cl

 sp^3d

Dipole moment $(\mu) = 0$

Trigonal bipyramidal

Non-polar

Final NEET(UG)-2021 Exam/12-09-2021

- **96.** From the following pairs of ions which one is not an iso-electronic pair ?
 - (1) O²⁻, F⁻
 - (2) Na+, Mg²⁺
 - (3) Mn²⁺. Fe³⁺
 - (4) Fe²⁺, Mn²⁺

Ans. (4)

Sol. Total no. of e^{-} $_{26}\text{Fe} \rightarrow 3\text{d}^{6}4\text{s}^{2}, \quad \text{Fe}^{+2} \rightarrow 3\text{d}^{6}$ 24 $_{25}\text{Mn} \rightarrow 3\text{d}^{5}4\text{s}^{2}, \quad \text{Mn}^{+2} \rightarrow 3\text{d}^{5}$ 23

97. The correct option for the value of vapour pressure of a solution at 45° C with benzene to octane in molar ratio 3:2 is :

[At 45° C vapour pressure of benzene is 280 mm Hg and that of octane is 420 mm Hg. Assume Ideal gas]

- (1) 160 mm of Hg
- (2) 168 mm of Hg
- (3) 336 mm of Hg
- (4) 350 mm of Hg

Ans. (3)

Sol. $\frac{n_B}{n_O} = \frac{3}{2}$

 $n_B = 3, n_O = 2$ $n_{Total} = 3 + 2 = 5$

$$X_{B} = \frac{n_{B}}{n_{T}} = \frac{3}{5}$$

$$X_O = \frac{n_O}{n_T} = \frac{2}{5}$$

$$P_S = P_B^{\circ} \times_B + P_O^{\circ} \times_O$$

$$P_{S} = 280 \times \frac{3}{5} + 420 \times \frac{2}{5}$$

= 336 mm of Hg

98. Match List-I with List-II:

List-I

List-II

- (a) $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$
- (i) Acid rain
- (b) $HOCl(g) \xrightarrow{hv}$
- (ii) Smog

OH + Cl

- (c) $CaCO_3 + H_2SO_4 \rightarrow CaSO_4 + H_2O + CO_9$
- (iii) Ozone depletion
- (d) $NO_2(g) \xrightarrow{hv} NO(g) + O(g)$
- (iv) Tropospheric pollution

Choose the **correct** answer from the options given below.

- (1) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
- (2) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
- (3) (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)
- (4) (a)-(iii), (b)-(ii), (c)-(iv), (d)-(i)

Ans. (3)

Sol.

List-I

List-II

- (a) $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$ (iv) Tropospheric pollution
- (b) $HOCl(g) \xrightarrow{hv} OH + Cl$ (iii) Ozone depletion
- (c) $CaCO_3 + H_2SO_4 \rightarrow$
- (i) Acid rain

- (d) $NO_{g}(g) \xrightarrow{hv} NO(g) + O(g)$ (ii) Smog
- **99.** The reagent 'R' in the given sequence of chemical reaction is :

Br
$$\frac{NH_2}{0-5^{\circ}C}$$
 Br $\frac{N_2^{+}C\Gamma}{Br}$ Br $\frac{Br}{Br}$ Br \frac

Ans. (2) Sol.

$$\begin{array}{c} \text{NH}_2 \\ \text{Br} \\ \\ \text{Br} \end{array} \xrightarrow{\begin{array}{c} \text{NaNO}_2 + \text{HCl} \\ \text{O-5}^{\circ}\text{C} \end{array}} \begin{array}{c} \text{Br} \\ \\ \text{Br} \\ \\ \text{Br} \end{array} \xrightarrow{\begin{array}{c} \text{Br} \\ \text{Br} \\ \\ \text{Br} \end{array}} \begin{array}{c} \text{Br} \\ \\ \text{Br} \\ \\ \text{Br} \end{array}$$

R: CH₃CH₂OH

Certain mild reducing agents like hypophosphorus acid or ethanol reduce diazonium salts to arene and themselves get oxidised to phosphorous acid and ethanal respectively.

 ${f 100.}$ The intermediate compound 'X' in the following chemical reaction is :

Ans. (1) Sol.

$$CH_3 + CrO_2Cl_2 \xrightarrow{CS_2} X \xrightarrow{H_3O^+} C-H$$

Toluene

Benzaldehyde

$$X = CH(OCrOHCl_2)_2$$